

    
      
          
            
  
DiffuPy 0.0.6-dev Documentation

DiffuPy is a generalizable Python implementation of the numerous label propagation algorithms inspired by the diffuStats
R package 1. DiffuPy supports generic graph formats such as JSON, CSV, GraphML, or GML.

Installation is as easy as getting the code from PyPI [https://pypi.python.org/pypi/diffupy] with
python3 -m pip install diffupy. See the installation documentation.


See also


	Documented on Read the Docs [http://diffupy.readthedocs.io/]


	Versioned on GitHub [https://github.com/multipaths/diffupy]


	Tested on Travis CI [https://travis-ci.org/multipaths/diffupy]


	Distributed by PyPI [https://pypi.python.org/pypi/diffupy]
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Disclaimer

DiffuPy is a scientific software that has been developed in an academic capacity, and thus comes with no warranty or
guarantee of maintenance, support, or back-up of data.







            

          

      

      

    

  

    
      
          
            
  
Installation

The latest stable code can be installed from PyPI [https://pypi.python.org/pypi/diffupy] with:

$ python3 -m pip install diffupy





The most recent code can be installed from the source on GitHub [https://github.com/multipaths/DiffuPy] with:

$ python3 -m pip install git+https://github.com/multipaths/DiffuPy.git





For developers, the repository can be cloned from GitHub [https://github.com/multipaths/DiffuPy] and installed in
editable mode with:

$ git clone https://github.com/multipaths/DiffuPy.git
$ cd diffupy
$ python3 -m pip install -e .









            

          

      

      

    

  

    
      
          
            
  
Basic Usage


	The two required input elements to run diffusion using DiffuPy are:
	
	A network/graph. (see Network-Input Formatting below)


	A dataset of scores. (see Scores-Input Formatting below)








[image: Alternative text]
For its usability, you can either:



	Use the Command Line Interface (see cli) [https://github.com/multipaths/DiffuPy/blob/master/docs/source/cli.rst].


	Use pythonically the functions provided in diffupy.diffuse:







from diffupy.diffuse import run_diffusion

# DATA INPUT and GRAPH as PATHs -> returned as *PandasDataFrame*
diffusion_scores = run_diffusion(~/data/input_scores.csv, ~/data/network.csv).as_pd_dataframe()

# DATA INPUT and GRAPH as Python OBJECTS -> exported *as_csv*
diffusion_scores = run_diffusion(input_scores, network).as_csv('~/output/diffusion_results.csv')






Methods

The diffusion method by default is z, which statistical normalization has previously shown to outperform.
Further parameters to adapt the propagation procedure are also provided, such as choosing from the available diffusion
methods or providing a custom method function. See diffusion Methods and/or Method modularity [https://github.com/multipaths/DiffuPy/blob/master/docs/source/diffusion.rst].

diffusion_scores_select_method = run_diffusion(input_scores, network, method = 'raw')

from networkx import page_rank # Custom method function

diffusion_scores_custom_method = run_diffusion(input_scores, network,  method = page_rank)





You can also provide your own kernel method or select among the ones provided in the kernels.py function which you can
provide as a kernel_method argument. By default regularised_laplacian_kernel is used.

from diffupath.kernels import p_step_kernel # Custom kernel calculation function

diffusion_scores_custom_kernel_method = run(input_scores, method = 'raw', kernel_method = p_step_kernel)





So method stands for the diffusion process method, and kernel_method for the kernel calculation method.




Formatting

Before running diffusion algorithms on your network using DiffuPy, take into account the graph and
input data/scores formats. You can find specified here samples of supported input scores and networks.






Input format

The input is preprocessed and further mapped before the diffusion. See input mapping or see process_input docs [https://github.com/multipaths/DiffuPy/blob/master/docs/source/preprocessing.rst] for further details. Here we
outline the input formats covered for its preprocessing.


Scores

You can submit your dataset in any of the following formats:


	CSV (.csv)


	TSV (.tsv)


	pandas.DataFrame


	List


	Dictionary




(check Input dataset examples)

So you can either provide a path to a .csv or .tsv file:

from diffupy.diffuse import run_diffusion

diffusion_scores_from_file = run_diffusion('~/data/diffusion_scores.csv', network)





or Pythonically as a data structure as the input_scores parameter:

data = {'Node':  ['A', 'B',...],
      'Node Type': ['Metabolite', 'Gene',...],
       ....
      }
df = pd.DataFrame (data, columns = ['Node','Node Type',...])

diffusion_scores_from_dict = run_diffusion(df, network)





Please ensure that the dataset minimally has a column ‘Node’ containing node IDs. You can also optionally add the
following columns to your dataset:


	NodeType


	LogFC *


	p-value





	*

	Log2 fold change








Networks

If you would like to submit your own networks, please ensure they are in one of the following formats:


	BEL [https://language.bel.bio/] (.bel)


	CSV (.csv)


	Edge [https://networkx.github.io/documentation/stable/reference/readwrite/edgelist.html] list [https://networkx.github.io/documentation/stable/reference/readwrite/edgelist.html] (.lst)


	GML [http://docs.yworks.com/yfiles/doc/developers-guide/gml.html] (.gml or .xml)


	GraphML [http://graphml.graphdrawing.org] (.graphml or .xml)


	Pickle (.pickle). BELGraph object from PyBEL [https://github.com/pybel/pybel/] 0.13.2


	TSV (.tsv)


	TXT (.txt)




Minimally, please ensure each of the following columns are included in the network file you submit:


	Source


	Target




Optionally, you can choose to add a third column, “Relation” in your network (as in the example below). If the relation
between the Source and Target nodes is omitted, and/or if the directionality is ambiguous, either node can be
assigned as the Source or Target.




Kernel

If you dispose of a precalculated kernel, you can provide directly the kernel object without needing to also provide a
graph object. As mentioned above, if you wish to use your kernel method function you can provide it as kernel_method
argument on the previous described function.






Input dataset examples

DiffuPath accepts several input formats which can be codified in different ways. See the
diffusion scores [https://github.com/multipaths/DiffuPy/blob/master/docs/source/diffusion.rst] summary for more
details on how the labels input are treated according each available method.

1. You can provide a dataset with a column ‘Node’ containing node IDs.






	Node





	A



	B



	C



	D






from diffupy.diffuse import run_diffusion

diffusion_scores = run_diffusion(dataframe_nodes, network)





Also as a list of nodes:

['A', 'B', 'C', 'D']





diffusion_scores = run_diffusion(['A', 'B', 'C', 'D'], network)





2. You can also provide a dataset with a column ‘Node’ containing node IDs as well as a column ‘NodeType’,
indicating the entity type of the node to run diffusion by entity type.







	Node

	NodeType





	A

	Gene



	B

	Gene



	C

	Metabolite



	D

	Gene






Also as a dictionary of type:list of nodes :

{'Gene': ['A', 'B', 'D'], 'Metabolite': ['C']}





diffusion_scores = run_diffusion({'Genes': ['A', 'B', 'D'], 'Metabolites': ['C']}, network)





3. You can also choose to provide a dataset with a column ‘Node’ containing node IDs as well as a column ‘logFC’
with their logFC. You may also add a ‘NodeType’ column to run diffusion by entity type.







	Node

	LogFC





	A

	4



	B

	-1



	C

	1.5



	D

	3






Also as a dictionary of node:score_value :

{'A':-1, 'B':-1, 'C':1.5, 'D':4}





diffusion_scores = run_diffusion({'A':-1, 'B':-1, 'C':1.5, 'D':4})





Combining point 2., you can also indicating the node type:








	Node

	LogFC

	NodeType





	A

	4

	Gene



	B

	-1

	Gene



	C

	1.5

	Metabolite



	D

	3

	Gene






Also as a dictionary of type:node:score_value :

{Gene: {A:-1, B:-1, D:4}, Metabolite: {C:1.5}}

diffusion_scores = run_diffusion({Gene: {A:-1, B:-1, D:4}, Metabolite: {C:1.5}}, network)





4. Finally, you can provide a dataset with a column ‘Node’ containing node IDs, a column ‘logFC’ with their logFC
and a column ‘p-value’ with adjusted p-values. You may also add a ‘NodeType’ column to run diffusion by entity type.








	Node

	LogFC

	p-value





	A

	4

	0.03



	B

	-1

	0.05



	C

	1.5

	0.001



	D

	3

	0.07






This only accepted pythonicaly in dataaframe format.

See the sample datasets [https://github.com/multipaths/DiffuPy/tree/master/examples/datasets] directory for example
files.




Custom-network example








	Source

	Target

	Relation





	A

	B

	Increase



	B

	C

	Association



	A

	D

	Association






You can also take a look at our sample networks [https://github.com/multipaths/DiffuPy/tree/master/examples/networks]
folder for some examples.




Input Mapping/Coverage

Even though it is not relevant for the input user usage, taking into account the input mapped entities over the
background network is relevant for the diffusion process assessment, since the coverage of the input implies the actual
entities-scores that are being diffused. In other words, only the entities whose labels match an entity in the network
will be further processed for diffusion.

Running diffusion will report the mapping as follows:

Mapping descriptive statistics

wikipathways:
gene_nodes  (474 mapped entities, 15.38% input coverage)
mirna_nodes  (2 mapped entities, 4.65% input coverage)
metabolite_nodes  (12 mapped entities, 75.0% input coverage)
bp_nodes  (1 mapped entities, 0.45% input coverage)
total  (489 mapped entities, 14.54% input coverage)

kegg:
gene_nodes  (1041 mapped entities, 33.80% input coverage)
mirna_nodes  (3 mapped entities, 6.98% input coverage)
metabolite_nodes  (6 mapped entities, 0.375% input coverage)
bp_nodes  (12 mapped entities, 5.36% input coverage)
total  (1062 mapped entities, 31.58% input coverage)

reactome:
gene_nodes  (709 mapped entities, 23.02% input coverage)
mirna_nodes  (1 mapped entities, 2.33% input coverage)
metabolite_nodes  (6 mapped entities, 37.5% input coverage)
total  (716 mapped entities, 22.8% input coverage)

total:
gene_nodes  (1461 mapped entities, 43.44% input coverage)
mirna_nodes  (4 mapped entities, 0.12% input coverage)
metabolite_nodes  (13 mapped entities, 0.38% input coverage)
bp_nodes  (13 mapped entities, 0.39% input coverage)
total  (1491 mapped entities, 44.34% input coverage)





To graphically see the mapping coverage, you can also plot a heatmap view of the mapping (see views) [https://github.com/multipaths/DiffuPath/blob/master/docs/source/views.rst]. To see how the mapping is performed over
an input pipeline preprocessing, take a look at this Jupyter Notebook [https://nbviewer.jupyter.org/github/multipaths/Results/blob/master/notebooks/processing_datasets/dataset_1.ipynb]
or see process_input docs [https://github.com/multipaths/DiffuPy/blob/master/docs/source/preprocessing.rst]
in DiffuPy.




Output format

The returned format is a custom Matrix type, with node labels as rows and a column with the diffusion score, which can
be exported into the following formats:

diffusion_scores.to_dict()
diffusion_scores.as_pd_dataframe()
diffusion_scores.as_csv()
diffusion_scores.to_nx_graph()









            

          

      

      

    

  

    
      
          
            
  
Command Line Interface

DiffuPy Command Line Interface


diffupy

DiffuPy

diffupy [OPTIONS] COMMAND [ARGS]...






diffuse

Run a diffusion method for the provided input_scores over a given network.


	param input

	Path to a (miscellaneous format) data input to be processed/formatted.



	param network

	Path to the network as a (NetworkX) graph or as a (diffuPy.Matrix) kernel.



	param output

	Path (with file name) for the generated scores output file. By default ‘$OUTPUT/diffusion_scores.csv’



	param method

	Elected method [“raw”, “ml”, “gm”, “ber_s”, “ber_p”, “mc”, “z”] or custom method FUNCTION(network, scores, kargs). By default ‘raw’



	param binarize

	If logFC provided in dataset, convert logFC to binary. By default False



	param threshold

	Codify node labels by applying a threshold to logFC in input. By default None



	param absolute_value

	Codify node labels by applying threshold to | logFC | in input. By default False



	param p_value

	Statistical significance. By default 0.05



	param format_output

	Elected output format [“CSV”, “JSON”]. By default ‘CSV’



	param kernel_method

	Callable method for kernel computation.





diffupy diffuse [OPTIONS]





Options


	
-i, --input <input>

	Required Input data






	
-n, --network <network>

	Required Path to the network graph or kernel






	
-o, --output <output>

	Output file






	
-m, --method <method>

	Diffusion method


	Options

	z | gm | ml | ber_p | raw | mc | ber_s










	
-b, --binarize <binarize>

	If logFC provided in dataset, convert logFC to binary (e.g., up-regulated entities to 1, down-regulated to -1). For scoring methods that accept quantitative values (i.e., raw & z), node labels can also be codified with LogFC (in this case, set binarize==False).






	
-t, --threshold <threshold>

	Codify node labels by applying a threshold to logFC in input.






	
-a, --absolute_value <absolute_value>

	Codify node labels by applying threshold to | logFC | in input. If absolute_value is set to False,node labels will be signed.






	
-p, --p_value <p_value>

	Statistical significance (p-value).


	Default

	0.05










	
-f, --format_output <format_output>

	Choose CSV or JSON output scores file format.


	Default

	csv












kernel

Generate a kernel for a given network.


	param network

	Path to the network as a (NetworkX) graph to be transformed to kernel.



	param output

	Path (with file name) for the generated scores output file. By default ‘$OUTPUT/diffusion_scores.csv’



	param log

	Logging profiling option.





diffupy kernel [OPTIONS]





Options


	
-g, --graph <graph>

	Required Input network






	
-o, --output <output>

	Output path to store the generated kernel pickle


	Default

	/home/docs/.diffupy/output/kernel.json










	
-l, --log

	Activate debug mode













            

          

      

      

    

  

    
      
          
            
  
Kernel

Compute graph kernels.


	
diffupy.kernels.diffusion_kernel(graph: networkx.classes.graph.Graph, sigma2: float [https://docs.python.org/3/library/functions.html#float] = 1, normalized: bool [https://docs.python.org/3/library/functions.html#bool] = True) → diffupy.matrix.Matrix

	Compute the classical diffusion kernel that involves matrix exponentiation.

It has a “bandwidth” parameter sigma^2 that controls the extent of the spreading.
Quoting [Smola, 2003]:
k(x1,x2) can be visualized as the quantity of some substance that would accumulate at
vertex x2 after a given amount of time if we injected the substance at vertex x1 and let
it diffuse through the graph along the edges.

This kernel can be computed using both the unnormalised and normalised graph Laplacian.
:param graph: A graph
:param sigma2: Controls the extent of the spreading.
:param normalized: Indicates if Laplacian transformation is normalized or not.
:return: Laplacian representation of the graph






	
diffupy.kernels.compute_time_kernel(graph: networkx.classes.graph.Graph, normalized: bool [https://docs.python.org/3/library/functions.html#bool] = False) → diffupy.matrix.Matrix

	Compute the commute-time kernel, which is the expected time of going back and forth between a couple of nodes.

If the network is connected, then the commuted time kernel will be totally dense, therefore reflecting global
properties of the network. For further details, see [Yen, 2007]. This kernel can be computed using both the
unnormalised and normalised graph Laplacian.


	Parameters

	
	graph – A graph


	normalized – Indicates if Laplacian transformation is normalized or not.






	Returns

	Laplacian representation of the graph.










	
diffupy.kernels.inverse_cosine_kernel(graph: networkx.classes.graph.Graph) → diffupy.matrix.Matrix

	Compute the inverse cosine kernel, which is based on a cosine transform  on the spectrum of the normalized LM.

Quoting [Smola, 2003]: the inverse cosine kernel treats lower complexity
functions almost equally, with a significant reduction in the upper end of the spectrum.

This kernel is computed using the normalised graph Laplacian.


	Parameters

	graph – A graph



	Returns

	Laplacian representation of the graph










	
diffupy.kernels.regularised_laplacian_kernel(graph: networkx.classes.graph.Graph, sigma2: float [https://docs.python.org/3/library/functions.html#float] = 1, add_diag: int [https://docs.python.org/3/library/functions.html#int] = 1, normalized: bool [https://docs.python.org/3/library/functions.html#bool] = False) → diffupy.matrix.Matrix

	Compute the regularised Laplacian kernel, which is a standard in biological networks.

The regularised Laplacian kernel arises in numerous situations, such as the finite difference formulation of the
diffusion equation and in Gaussian process estimation. Sticking to the heat diffusion model, this function allows
to control the constant terms summed to the diagonal through add_diag, i.e. the strength of the leaking in each node.
If a node has diagonal term of 0, it is not allowed to disperse heat. The larger the diagonal term of a node, the
stronger the first order heat dispersion in it, provided that it is positive. Every connected component in the graph
should be able to disperse heat, i.e. have at least a node i with add_diag[i] > 0. If this is not the case, the result
diverges. More details on the parameters can be found in [Smola, 2003].
This kernel can be computed using both the unnormalised and normalised graph Laplacian.


	Parameters

	
	graph – A graph


	a – regularising summed to the spectrum. Spectrum of the normalised Laplacian matrix.


	p – p-step kernels can be cheaper to compute and have been successful in biological tasks.






	Returns

	Laplacian representation of the graph.










	
diffupy.kernels.p_step_kernel(graph: networkx.classes.graph.Graph, a: int [https://docs.python.org/3/library/functions.html#int] = 2, p: int [https://docs.python.org/3/library/functions.html#int] = 5) → diffupy.matrix.Matrix

	Compute the inverse cosine kernel, which is based on a cosine transform on the spectrum of the normalized LM.

This kernel is more focused on local properties of the nodes, because random walks
are limited in terms of length. Therefore, if p is small, only a fraction of the values k(x1,x2)
will be non-null if the network is sparse [Smola, 2003]. The parameter a is a regularising term
that is summed to the spectrum of the normalised Laplacian matrix, and has to be 2 or greater.
The p-step kernels can be cheaper to compute and have been successful in biological tasks, see the benchmark in
[Valentini, 2014].


	Parameters

	
	graph – A graph


	a – regularising summed to the spectrum. Spectrum of the normalised Laplacian matrix.


	p – p-step kernels can be cheaper to compute and have been successful in biological tasks.






	Returns

	Laplacian representation of the graph.













            

          

      

      

    

  

    
      
          
            
  
Diffusion

The methods in this modules manage the treatment of the different score diffusion methods applied to/from a path set of
labels/scores of/on a certain network (as a graph format or a graph kernel matrix stemming from a graph).

Diffusion methods procedures provided in this package differ on:
(a) How to distinguish positives, negatives and unlabelled examples.
(b) Their statistical normalisation.

Input scores can be specified in three formats:
1. A named numeric vector, whereas if several of these vectors that share the node names need to be smoothed.
2. A column-wise matrix. However, if the unlabelled entities are not the same from one case to another.
2. A named list of such score matrices can be passed to this function. The path format will be kept in the output.

If the path labels are not quantitative, i.e. positive(1), negative(0) and possibly unlabelled, all the scores raw, gm,
ml, z, mc, ber_s, ber_p can be used.


Methods

The provided methods can be elected for the diffusion computation through the paramter method.

from diffupy.diffuse import run_diffusion

diffusion_scores = run_diffusion(input_scores, network, method = 'raw')






Methods without statistical normalisation


	raw: positive nodes introduce unitary flow {y_raw[i] = 1} to the network, whereas either negative and unlabelled
nodes introduce null diffusion {y_raw[j] = 0}. 1. They are computed as: f_{raw} = K · y_{raw}. Where K is
a graph kernel, see kernels. These scores treat negative and unlabelled nodes equivalently.


	ml: Same as raw, but negative nodes introduce a negative unit of flow. Therefore not equivalent to unlabelled
nodes 2.


	gl: Same as ml, but the unlabelled nodes are assigned a (generally non-null) bias term based on the total number
of positives, negatives and unlabelled nodes 3.


	ber_s: A quantification of the relative change in the node score before and after the network smoothing. The score
for a particular node i can be written as f_{ber_s}[i] = f_{raw}[i] / (y_{raw}[i] + eps). Where eps is a parameter
controlling the importance of the relative change.







Methods with statistical normalisation


	z: a parametric alternative to the raw score of node is subtracted its mean value and divided by its standard
deviation. Differential trait of this package. The statistical moments have a closed analytical form and are inspired
in 4.


	mc: the score of node code {i} is based on its empirical p-value, computed by permuting the path {n.perm} times.
It is roughly the proportion of path permutations that led to a diffusion score as high or higher than the original
diffusion score.


	ber_p: used in 5, this score combines raw and mc, in order to take into account both the
magnitude of the {raw} scores and the effect of the network topology: this is a quantification of the relative change
in the node score before and after the network smoothing.









Summary tables


Methods without statistical normalization













	Scores

	y+

	y-

	yn

	Normalized

	Stochastic

	Quantitative

	Reference





	raw

	1

	0

	0

	No

	No.

	Yes

	1



	ml

	1

	-1

	0

	No

	No

	No

	6



	gm

	1

	-1

	k

	No

	No

	No

	3



	ber_s

	1

	0

	0

	No

	No

	Yes

	5









Methods with statistical normalization













	Scores

	y+

	y-

	yn

	Normalized

	Stochastic

	Quantitative

	Reference





	ber_p

	1

	0

	0*

	Yes

	Yes

	Yes

	5



	mc

	1

	0

	0*

	Yes

	Yes

	Yes

	5



	z

	1

	0

	0*

	Yes

	No

	Yes

	4











Method modularity

Through the parameter method can also be provided a callable function as a custom method.

from diffupy.diffuse import run_diffusion
from networkx import pagerank

diffusion_scores = run_diffusion(input_scores, network, method = pagerank)
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Constants

Constants of diffupy.


	
diffupy.constants.DEFAULT_DIFFUPY_DIR = '/home/docs/.diffupy'

	Default DiffuPy directory






	
diffupy.constants.OUTPUT = '/home/docs/.diffupy/output'

	Default DiffuPy output directory






	
diffupy.constants.ensure_output_dirs()

	Ensure that the output directories exists.






	
diffupy.constants.EMOJI = '🌐'

	Available diffusion methods






	
diffupy.constants.RAW = 'raw'

	raw






	
diffupy.constants.ML = 'ml'

	ml






	
diffupy.constants.GM = 'gm'

	gm






	
diffupy.constants.MC = 'mc'

	mc






	
diffupy.constants.Z = 'z'

	z






	
diffupy.constants.BER_S = 'ber_s'

	ber_s






	
diffupy.constants.BER_P = 'ber_p'

	ber p






	
diffupy.constants.METHODS = {'ber_p', 'ber_s', 'gm', 'mc', 'ml', 'raw', 'z'}

	Available formats






	
diffupy.constants.CSV = 'csv'

	csv






	
diffupy.constants.XLS = 'xls'

	xml






	
diffupy.constants.XLSX = 'xlsx'

	xmls






	
diffupy.constants.TSV = 'tsv'

	tsv






	
diffupy.constants.GRAPHML = 'graphml'

	graphML






	
diffupy.constants.BEL = 'bel'

	bel






	
diffupy.constants.JSON = 'json'

	node link json






	
diffupy.constants.PICKLE = 'pickle'

	pickle






	
diffupy.constants.GML = 'gml'

	gml






	
diffupy.constants.EDGE_LIST = '.lst'

	edge list






	
diffupy.constants.GRAPH_FORMATS = ('csv', 'tsv', 'graphml', 'bel', 'json', 'pickle', 'gml')

	Available graph formats






	
diffupy.constants.KERNEL_FORMATS = ('csv', 'tsv', 'json', 'pickle')

	Available kernel formats






	
diffupy.constants.FORMAT_SEPARATOR_MAPPING = {'csv': ',', 'tsv': '\t'}

	Optional parameters






	
diffupy.constants.THRESHOLD = 'threshold'

	Expression value threshold






	
diffupy.constants.ABSOLUTE_VALUE_EXP = 'absolute_value'

	Acceptable column names of user submitted network






	
diffupy.constants.SOURCE = 'Source'

	Column name for source node






	
diffupy.constants.TARGET = 'Target'

	Column name for target node






	
diffupy.constants.RELATION = 'Relation '

	Dataset column names






	
diffupy.constants.NODE = 'Node'

	Node name






	
diffupy.constants.NODE_TYPE = 'NodeType'

	Node type






	
diffupy.constants.SCORE = 'Score'

	Unspecified score type






	
diffupy.constants.LOG_FC = 'LogFC'

	Log2 fold change (logFC)






	
diffupy.constants.P_VALUE = 'p-value'

	Statistical significance (p-value)









            

          

      

      

    

  

    
      
          
            
  
Matrix

Matrix class

Main Matrix Class.


	
class diffupy.matrix.Matrix(mat=None, rows_labels=None, cols_labels=None, graph=None, quadratic=False, name='', init_value=None)

	Matrix class.

Initialize matrix.


	Parameters

	
	mat – matrix initialization


	rows_labels – 


	cols_labels – column labels


	graph – graph


	quadratic – quadratic


	name – name


	init_value – value to be initialized (int) or list of values from labels









	
validate_labels()

	Sanity function to check the dimensionality of the Matrix.






	
update_ix_mappings()

	Update the index-label mapping.






	
validate_labels_and_update_ix_mappings()

	Update function, called when the Matrix mutates, combining the two previous functionalities.






	
property cols_labels

	Return a copy of Matrix Object.






	
property rows_labels_ix_mapping

	Set row labels to ix.






	
property cols_labels_ix_mapping

	Set column labels to ix.






	
property rows_idx_scores_mapping

	Set mapping indexes to scores.






	
property cols_idx_scores_mapping

	Set mapping indexes to scores.






	
get_row_from_label(label)

	Get row from labels.






	
set_row_from_label(label, x)

	Set row from label.






	
delete_row_from_label(label)

	Set row from label.






	
get_col_from_label(label)

	Get col from labels.






	
delete_col_from_label(label)

	Set col from label.






	
set_cell_from_labels(row_label, col_label, x)

	Set cell from labels.






	
get_cell_from_labels(row_label, col_label)

	Get cell from labels.






	
row_bind(rows=None, rows_labels=None, matrix=None)

	Return a copy of Matrix Object.






	
col_bind(cols=None, cols_labels=None, matrix=None)

	Return a copy of Matrix Object.






	
match_rows(reference_matrix)

	Match method to set rows labels as reference matrix.






	
match_cols(reference_matrix)

	Match method to set cols labels as reference matrix.






	
match_mat(reference_matrix, match_quadratic=None)

	Match method to set axis labels as reference matrix.






	
match_missing_rows(reference_labels, missing_fill=0)

	Match method to set missing rows labels from reference labels with the missing_fill value.






	
match_delete_rows(reference_labels)

	Match method to set missing rows labels from reference labels with the missing_fill value.






	
match_missing_cols(reference_labels, missing_fill)

	Match method to set missing cols labels from reference labels with the missing_fill value.






	
order_rows(reverse=True, col_ref_idx=None)

	Order matrix rows by cell values.






	
len_not_null()

	Get count of n cells not 0 in matrix.






	
binarize(null_value=- 1, threshold=0, positive_value=1)

	Get count of n cells not 0 in matrix.






	
to_dict(ordered=True)

	Export/convert matrix as a dictionary data structure.






	
as_pd_dataframe(ordered=True)

	Export matrix as a data frame using the headers (row_labels, cols_labels) of the Matrix class.






	
as_csv(path, index=True, ordered=True)

	Export matrix to csv file using the headers (row_labels, cols_labels) of the Matrix class.






	
to_nx_graph()

	Export matrix as a Graph using the headers (row_labels, cols_labels) of the Matrix class.










	
class diffupy.matrix.LaplacianMatrix(graph, normalized=False, node_argument='name', name='')

	Laplacian matrix class.

Initialize laplacian.
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